Received 1 November 2005 Accepted 21 November 2005

Online 26 November 2005

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xue-Yuan Wang, Ming-Jie Zhang,* Xiang-Qian Wang and Yu-Min Nie

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: mjzhangtju@163.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.041 wR factor = 0.118 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acetonyl methyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)pyridine-3,5-dicarboxylate

In the title compound, $C_{19}H_{20}N_2O_7$, the C atom in the 4position of the dihydropyridine ring is displaced out of the plane by 0.0461 (2) Å. The dihydropyridine ring plane is almost perpendicular to the benzene ring, with a dihedral angle of 88.9 (3)°.

Comment

4-Phenyl-1,4-dihydropyridines are useful in treating diseases of the circulation, especially those concerning coronaries (Bossert *et al.*, 1972; Ohno *et al.*, 1986). We present here the structure of the title compound, (I).

In (I), the dihydropyridine ring is almost perpendicular to the benzene ring, with a dihedral angle of 88.9 (3)° (Fig. 1). C7 is displaced from the dihydropyridine ring plane by 0.0461 (2) Å. Intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds stabilize the crystal structure (Fig. 2 and Table 2).

Experimental

The title compound was prepared according to the method described by Phillips (1949) and Berson & Brown (1955). To a mixture of 2nitrobenzaldehyde (15.1 g, 0.1 mol), acetoacetate-2-epoxyethylpropionate (14.4 g, 0.1 mol) and methyl acetoacetate (11.6 g, 0.1 mol), methanol (100 ml) and ammonia solution (32 ml) were added under reflux for 10 h hours, then the solution was filtered. The product was placed in a 100 ml three-neck flask, 30 ml of acetic acid and 50 ml of distilled water were added, and the mixture was heated under reflux for 24 h hours. The crude product was cooled, and filtered off. Yellow crystals (20.1 g, yield 50%) were obtained, and single crystals (m.p. 423-424 K) suitable for crystallographic analysis were obtained by slow evaporation of an ethanol solution. Spectroscopic analysis: IR (KBr, ν cm⁻¹): 3332, 3100, 2952, 1708, 1679, 1649, 1645, 1620, 1526, 1495, 1350, 1430, 1382, 1206, 716; ¹H NMR (CDCl₃, δ , p.p.m.): 7.25–7.67(m, 4H), 6.61(sw, 1H), 5.74(d, 1H), 4.59(q, 2H), 3.56(s, 3H), 2.29-2.34(s, 6H), 2.03(s, 3H). Analysis, calculated for C₁₉H₂₀N₂O₇: C 58.76, H 5.19, N 7.21%; found: C 58.80, H 5.20, N 7.25%.

© 2005 International Union of Crystallography

organic papers

Crystal data

C19H20N2O7 $M_r = 388.37$ Monoclinic, C2/c a = 26.462 (15) Åb = 9.566 (6) Å c = 16.159 (9) Å $\beta = 115.155(6)^{\circ}$ $V = 3703 (4) \text{ Å}^3$ Z = 8

Data collection

Bruker APEX-II CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.972, T_{\max} = 0.983$ 9700 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0544P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 2.0965P]
$wR(F^2) = 0.118$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
3272 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
257 parameters	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 $D_x = 1.393 \text{ Mg m}^{-3}$

Cell parameters from 2469

 $0.36 \times 0.22 \times 0.16 \text{ mm}$

3272 independent reflections 2456 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

reflections

 $\theta = 2.3 - 25.5^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

T = 293 (2) K

Block, yellow

 $R_{\rm int} = 0.021$ $\theta_{\rm max} = 25.0^{\circ}$

 $h = -31 \rightarrow 31$

 $k = -11 \rightarrow 7$

 $l = -19 \rightarrow 19$

Table 1

Selected	geometric	parameters	(A,	°).	
----------	-----------	------------	-----	-----	--

1.226 (2)	O6-C16	1.353 (2)
1.217 (2)	O6-C17	1.436 (2)
1.331 (2)	O7-C18	1.204 (3)
1.435 (2)	N1-C1	1.475 (3)
1.216 (2)	N2-C11	1.373 (3)
1.204 (2)	N2-C13	1.374 (2)
111.45 (14)	C8-C7-C6	110.53 (14)
109.09 (14)		· · · ·
-41.6 (3)	C1-C6-C7-C8	132.86 (18)
	1.226 (2) 1.217 (2) 1.331 (2) 1.435 (2) 1.216 (2) 1.204 (2) 111.45 (14) 109.09 (14) -41.6 (3)	$\begin{array}{cccccc} 1.226 & (2) & 06-C16 \\ 1.217 & (2) & 06-C17 \\ 1.331 & (2) & 07-C18 \\ 1.435 & (2) & N1-C1 \\ 1.216 & (2) & N2-C11 \\ 1.204 & (2) & N2-C13 \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots O4^{i}$	0.86	2.16	2.958 (2)	154
$C2-H2\cdots O7^{ii}$	0.93	2.44	3.237 (4)	144
Symmetry codes: (i) -	$-x + \frac{1}{2}, v + \frac{1}{2}, -x$	$z + \frac{1}{3}$; (ii) $-x_{1} - x_{2}$	v + 1, -z + 1	

Symmetry codes: (i) $-x + \frac{1}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x, -y + 1, -z + 1.

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C-H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C-C bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.93-0.98 Å and N-H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C \text{ or } N)$.

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

The hydrogen-bonding scheme in (I). $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds are shown as dashed lines (symmetry codes are as in Table 2).

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Berson, J. A. & Brown, E. (1955). J. Am. Chem. Soc. 77, 444-447.

- Bossert, F., Elberfeld, W. & Vater, W. (1972). US Patent No. 3 644 627.
- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ohno, S., Komatsu, O., Mizukoshi, K., Ichihara, K., Nakamura, Y. & Morishima, T. (1986). Chem. Pharm. Bull. 34, 1589-1606.
- Phillips, A. P. (1949). J. Am. Chem. Soc. 71, 4003-4007.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.